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A class of piecewise linear coupled map lattices with simple symbolic dynamics
is constructed. It can be solved analytically in terms of the statistical mechanics
of spin lattices. The corresponding Hamiltonian is written down explicitly in
terms of the parameters of the map. The approach follows the line of recent
mathematical investigations. But the presentation is kept elementary so that
phase transitions in the dynamical model can be studied in detail. Although the
method works only for map lattices with repelling invariant sets some of the
conclusions, i.e., the role of local curvature of the single site map and properties
of the nearest neighbour coupling might play an important role for phase tran-
sitions in general dynamical systems.
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1. INTRODUCTION

Coupled map lattices have been introduced more than a decade ago as a
paradigm for studying general features of coherent pattern formation in
spatially extended systems. (10) Since these models contain basic features,
i.e., the competition between local chaos and spatial interaction in a very
efficient way most investigations have been based on numerical analysis.
One of the prominent properties of these systems are qualitative changes
of the dynamical behaviour which are intimately related to the limit of
large system size. These phenomena are usually called phase transitions
in contrast to plain bifurcations for which the spatial extension plays a
minor role. In fact, numerical simulations on particular piecewise linear



antisymmetric maps display a phase transition like behaviour when placed
on a two-dimensional square lattice. (12) Although these features resemble
Ising phase transitions a detailed analysis shows slight deviations from
Ising universality. (11) It is quite unclear whether hidden long range correla-
tions are responsible for these deviations or whether equilibrium like
behaviour is restored in the dynamical model on larger length scales. (5)

Hence, phase transitions in spatially extended dynamical systems are to
date not very well understood from the general point of view.

Of course, one has to clarify why general dynamical models have
something in common with equilibrium statistical mechanics at all. Such a
link rests on a quite old idea which dates back at least several decades. One
uses to some extent the symbolic dynamics of a chaotic system in order to
establish an equivalence between its ergodic properties and the statistical
mechanics of spin systems (cf. ref. 1 for an elementary introduction). Such
approaches have been used to rigorously relate weakly coupled fully
chaotic map lattices with the high temperature phase of spin lattices. (4, 3, 6)

Hence, space-time chaos can be understood as a state where all correlations
decay exponentially. It is tempting to look for whether the appearance of
coherent patterns from space-time chaotic states is related to equilibrium
phase transitions in the corresponding symbolic dynamics. General sugges-
tions can be found in different contributions (cf., e.g., ref. 8) but without
making the argument explicit. For particular cases like globally coupled
models (9) or discontinuous maps (7) such investigations have been performed
recently. Thus, there is striking evidence that coherent pattern formation
has much in common with equilibrium phase transitions.

Here I am going to highlight these concepts by using an elementary
approach and avoiding the sometimes heavy mathematical notation. From
the principle point of view one may claim that the content is not completely
new. However, by concentrating on simple piecewise linear maps the main
features will be illustrated which allow to construct the equivalence
between dynamical systems and Ising spin lattices. In particular, the
interactions of the corresponding spin Hamiltonian are expressed in terms
of parameters of the dynamical model. Therefore, it is particularly easy to
detect phase transitions. But we have to pay a price for the simplicity of the
underlying construction. The approach works only for repellers. Such a
shortcoming might look slightly odd from a superficial physical point of
view, but it plays to some extent a minor role if one has dynamical systems
theory in mind. It is in fact widely known that analytical approaches, in
particular those based on symbolic dynamics are often technically much
more difficult to apply for systems having attracting sets. This feature is
already reflected by the celebrated Smale horseshoe and transfers to some
extent to all hyperbolic maps of the plane. Thus to comply with what we
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Fig. 1. Piecewise linear single site map with invariant Cantor set. The first two generations
of cylinder sets are indicated. cs̃s denotes the modulus of the slope.

have promised in the title, i.e., using a completely elementary approach one
is forced to investigate systems with repelling invariant sets.

2. THE ISING MAP

To begin with let me introduce the single site map. Consider the piece-
wise linear map depicted in Fig. 1, f: I− 2 I+Q I, where I=[a−− , a+− ],
I−=[a−− , a−+], I+=[a++, a+− ] for some a−− < a−+ < a++ < a+− , and
endpoints of the intervals I± are mapped to endpoints. If |fŒ(x)| > 1, the so
called cylinder sets

Is0 ,..., sn :={x ¥ I | fk(x) ¥ Isk , 0 [ k [ n} (1)

shrink exponentially in size and lead to a binary symbolic dynamics in the
obvious way, fk(x) ¥ Isk , sk ¥ {− , +}. Since the map is not defined on the
whole interval I the invariant set is a well known type of Cantor repeller.

So far the topological features are completely fixed. In order to discuss
ergodic properties one needs to specify an invariant measure. First of all,
calculating invariant measures is usually a difficult task if the slope of the
map is not constant. Let me therefore restrict to the case that the map has
constant slope on the cylinder sets of the second generation

cs̃s :=|fŒ(x)|x ¥ Is̃, s . (2)
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Thus for cs̃+ ] cs̃− the slope of the map is not constant on the sets Is̃
of the partition and reflects in a very elementary way a finite amount of
curvature of the map. Furthermore, there does not seem to be a natural
invariant measure available since we are dealing with repelling sets.
Lebesgue typical initial conditions will finally leave the domain of interest.
However, there exists a generalisation of a natural invariant measure for
repelling sets which just takes the local slopes into account. Formally this
measure maximises the topological pressure corresponding to the local
expansion rate a property which is shared by SRB measures in systems
with attracting sets. The measure assigns a probability to the cylinder sets
(1) according to the expression

m(Is0 ,..., sn )=hs0 s1
nsn−1 sn
ln+1

D
n−2

k=0

1
csk sk+1

. (3)

Equation (3) can be either calculated from the condition of invariance or
by employing transfer operator techniques. (13) Here l is the largest eigen-
value of the transfer matrix

H
¯̄
=R

1/c−− 0 0 1/c+−
1/c−− 0 0 1/c+−
0 1/c−+ 1/c++ 0

0 1/c−+ 1/c++ 0

S (4)

and determines the escape rate of the repeller. (h−− , h−+, h++, h+− ) denotes
the corresponding right- and (n−− , n−+, n++, n+− ) the corresponding left-
eigenvector. Both are normalised according to n

¯
· h
¯
=1. The explicit

expression for these quantities do not matter for our purpose. It is however
important that the probabilities (3) are given in terms of the product of
slopes which the trajectory encounters during its itinerary, if we discard
boundary terms appearing for s0 and sn. These boundary terms would be
absent if the measure were based on an expansion in terms of periodic
orbits. Hence, the boundary contributions will not play an essential role in
our discussion.

With the measure (3) mean values of quantities, i.e., integrals involving
phase space functions can be calculated. Using a partition by cylinder sets
the mean value of a phase space function g reads

OgP=F g dm= lim
nQ.

C
s0 ,..., sn

g(xs0 ,..., sn ) m(Is0 ,..., sn ), (5)

136 Just



where xs0 ,..., sn denotes a point in the cylinder set under consideration. The
particular choice of the point does not matter as long as the observable g is
Hölder continuous (cf., e.g., ref. 2). The right hand side of Eq. (5) has the
form of a canonical thermodynamic expectation value for a spin chain, if
we define the negative logarithm of the probability (3) as the Hamiltonian.
If we discard the above mentioned boundary contributions the Hamil-
tonian follows from Eq. (3) as

Hs0 ,..., sn=C
n−1

k=0
ln csk sk+1+(n+1) ln l. (6)

The spatial extension of the spin chain corresponds to the temporal
evolution in the dynamical system. Equation (6) yields the usual Ising chain
Hamiltonian with nearest neighbour pair interaction. The exchange con-
stant and the external field are determined by ln(c−−/c−+)+ln(c++/c+− )
and ln(c++/c−−) respectively. Whereas the exchange constant is given in
terms of the curvature of the map the external field is essentially related to
symmetry properties of the map. Finally, the escape rate of the repeller
contributes to the ground state energy. Since the system is one-dimensional
and has short range interaction no phase transition occurs, i.e., the mean
values depend smoothly on the parameters of the system.

All the previous considerations are special cases of a much more
general mathematical approach (cf., e.g., ref. 14). The important point
which I want to stress here is that these advanced formalisms become
simple for piecewise linear maps. The latter are defined to some extent in a
geometric way. Fixing partitions {Us} and {Us̃, s} one defines the map
f: Us̃, s Q Us in such a way that it acts linear on each set. These considera-
tions do not depend on the dimension of the space under consideration
and we are going to carry them over for the construction of coupled map
lattices and the associated statistical mechanics.

3. COUPLED CANTOR REPELLERS

Let us consider a spatially one-dimensional map lattice consisting of L
lattice sites where periodic boundary conditions are imposed. In order to
study the limit of infinite system size we will consider the limit LQ. after
statistical quantities like the invariant measure have been determined.
Phase transitions, i.e., the occurrence of different ergodic components can
then be detected by including a small symmetry breaking field. Such an
approach avoids the difficulties which are related to the implementation of
an infinite dimensional system at the very beginning.
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We will consider single site maps of the type introduced in the pre-
vious section (cf. Fig. 1) so that the whole phase space is given by the
L-dimensional cube IL. Coordinates of the single site map are denoted by x (n),
0 [ n [ L−1. If we first consider the system without spatial coupling then
the uncoupled map lattice T0 maps each coordinate according to the single
site map. Since each map carries its cylinder sets the cylinder sets of the
uncoupled model are given by direct products, i.e.

Us
¯
=Is(0) é · · · é Is(L−1) (7)

and

Us
¯
0 ,..., s

¯
n−1
={x

¯
¥ IL | Tk0(x¯

) ¥ Us
¯
k
, 0 [ k [ n−1}

=Is(0)0 ,..., s(0)n−1 é · · · é Is(L−1)0 ,..., s(L−1)n−1
(8)

where s
¯
=(s (0),..., s (L−1)) enumerates the different elements of the parti-

tion (7). According to Eq. (8) the symbolic dynamics is now given in terms
of two-dimensional symbol lattices where one direction corresponds to the
spatial dimension of the dynamical system and the other to temporal
evolution. The uncoupled map lattice acts linear on the cylinder sets of the
second generation

T0: Us
¯
˜ , s
¯
Q Us

¯
(9)

and the determinant of the Jacobian is just given by the product of the
local slopes

|det(DT0(x¯
))|x
¯
¥ Us
¯
˜ , s
¯

=cs̃ (0)s(0) · · · cs̃ (L−1)s(L−1). (10)

Fig. 2. Diagrammatic view of cylinder sets of the second generation Us
¯
˜ , s
¯
for two maps

without coupling (cf. Fig. 1). Greyshading indicates a particular preimage (U−+, +− ) and its
image (U+, − ) with respect to the piecewise linear transformation T0. Dots mark the vertices of
sets of the first generation. Full lines indicate cylinder sets of the single site map and broken
lines a particular preimage and its image.
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For the case of two maps the whole phase space structure is depicted in
Fig. 2. It is important to emphasise that the absence of spatial coupling is
reflected by the product structure of the cylinder sets.

We are now going to introduce a spatial coupling in our model. Con-
sidering a coupling function F: ILQ IL let us introduce the coupled map
lattice

T=T0 p F. (11)

If we just assume some analytical expression for F the simple phase space
structure which has been just mentioned might be destroyed. In order to
keep the whole analysis simple we use a different approach. We first intro-
duce cylinder sets and then define the appropriate coupling function. As
mentioned above a real spatial coupling has to remove the product struc-
ture from the cylinder sets. We therefore keep the sets of the first genera-
tion {Us

¯
} and deform the cubes of the second generation {Vs

¯
˜ , s
¯
} so that the

product structure is removed. Since the outer vertex of Us
¯
˜ , s
¯
is fixed by the

vertex of Us
¯
˜ , the deformed cube Vs

¯
˜ , s
¯
is uniquely determined by specifying

all of its (one-dimensional) edges. The situation is depicted in Fig. 3 for the
case of two maps. Finally we require that from the point of view of sym-
bolic dynamics the coupled map lattice inherits its properties from the
uncoupled one, i.e., it acts as (cf. Eq. (9))

T: Vs
¯
˜ , s
¯
Q Us

¯
, (12)

Fig. 3. Diagrammatic view of cylinder sets of the second generation Vs
¯
˜ , s
¯
for two coupled

maps (cf. Fig. 2). Greyshading indicates a particular preimage (V−+, +− ) and its image (U+, − )
with respect to the piecewise linear transformation T. Dots indicate the vertices of sets of the
first generation. They coincide with the values of the uncoupled map.
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and we require that T is linear on each cube Vs
¯
˜ , s
¯
. Hence edges are mapped

on edges. If we denote by t (n)s
¯
˜ , s
¯
the ratio between the edges of cube Vs

¯
˜ , s
¯
and

of Us
¯
extending along the n-axis, then the value of the determinant of the

Jacobian reads

|det(DT(x
¯
))|x
¯
¥ Vs
¯
˜ , s
¯

=
l(Us

¯
)

l(Vs
¯
˜ , s
¯
)
=D
L−1

n=0
t (n)s
¯
˜ , s
¯
, (13)

where l(.) denotes the volume of the corresponding cube. The just men-
tioned ratios t (n)s

¯
˜ , s
¯
are the important parameters of our geometrically intro-

duced map lattice since our considerations imply the analytical expression

(T(x
¯
)) (n)=−s̃ (n)t (n)s

¯
˜ , s
¯
(x (n)−as̃ (n)s(n))+s (n), x ¥ Vs

¯
˜ , s
¯
. (14)

For the uncoupled case T0 the local slopes read t (n)s
¯
˜ , s
¯
=cs̃ (n)s(n). Spatial

interaction between the maps is caused by the dependence of the local
slopes t (n)s

¯
˜ , s
¯
on neighbouring lattice sites. In addition, the coupling function

(cf. Eq. (11)) is easily read off as

(F(x
¯
)) (n)=

t (n)s
¯
˜ , s
¯

cs̃ (n)s(n)
(x (n)−as̃ (n)s(n))+as̃ (n)s(n) x ¥ Vs

¯
˜ , s
¯
. (15)

These explicit analytical expressions for the map are however not necessary
to determine the invariant measure which is completely specified in terms
of the local expansion rate (13). Since the symbolic dynamics has not
changed the measure is given by the product of these expansion rates, if
boundary terms are discarded (cf. Eq. (3)). Hence the corresponding spin
Hamiltonian reads

Hs
¯
0 ,..., s

¯
n−1
=−ln m(Us

¯
0 ,..., s

¯
n−1
)=C

n−1

k=0
C
L−1

n=0
ln t (n)s

¯
k , s
¯
k+1

(16)

where periodic boundary conditions are imposed for simplicity. The long
time averages of the model (14) are now given by canonical averages with
the two-dimensional spin Hamiltonian (16) in the thermodynamic limit of
infinite system size . The local slopes of the map lattice translate into spin
interactions. In particular the choice

t (n)s
¯
˜ , s
¯
=exp[−hs̃ (n)−Js̃ (n)(s (n)+s̃ (n+1))+e0] (17)
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yields the isotropic nearest neighbour coupled Ising model. Then, in the
paramagnetic phase (h=0, J < Jc=ln(`2+1)/2) the dynamics of Eq. (14)
is space-time mixing whereas for h=0, J > Jc the ‘‘inversion symmetry’’ of
the dynamical model is spontaneously broken. Because of the construction
of the coupled map lattice the local slopes are flipped according to the
symbol at neighbouring lattice sites. Therefore the type of coupling of the
coupled map lattice, e.g., a nearest neighbour coupling, translates directly
to the corresponding Hamiltonian. This feature made the analysis particu-
larly simple in contrast to the general case where the estimates for the spin
interaction introduce considerable technical difficulties into the analysis. (3)

In our case, the phase transition is caused by the modulation of the local
slopes, where for the choice (17) a change of slope by a factor of 3 is
already sufficient to induce the phase transition. Finally, one should
mention that the map lattice (14) is easily extended to a continuous func-
tion on each set Us

¯
using homotopies.

4. CONCLUSION

By means of a geometrical construction we have introduced a class of
piecewise linear coupled map lattices for which for the corresponding sta-
tistical mechanics in terms of two-dimensional spin lattices can be supplied
easily. Dynamical models can be realised where Ising-like phase transitions
appear. To trigger these phase transitions two ingredients are necessary.
Apart from curvature of the single site map a spatial coupling was imposed
which modulates the local slopes of the single site dynamics. Whether such
features are typical for realising phase transitions in expanding map lattices
is of course an open question and deserves further investigations. At least,
it is possible to test this conjecture numerically in map lattices having
attracting invariant sets.

Most systems for which a statistical mechanics has been explicitly
constructed has lead to quite complicated and highly anisotropic spin
models. (3, 9) Thus our construction, although being restricted to repelling
invariant sets can be regarded as a step towards the understanding of sta-
tistical mechanics of space-time chaotic systems, in particular since explicit
expressions relating the spin Hamiltonian and the parameters of the map
lattice have been supplied.

Within analytical approaches the role of pruning for space-time
periodic orbits has not been addressed so far. Variants of the proposed
model class can be used to investigate these features since on has access to
the corresponding statistical mechanics. For instance, it seems tempting to
extend and test periodic orbit expansions for space-time chaotic systems.
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